Publications > Compressive Sensing Hyperspectral Imager in the LWIR for Chemical Plume Detection

Compressive Sensing Hyperspectral Imager in the LWIR for Chemical Plume Detection

Publication

Publication

Abstract

An environmentally hardened compressive sensing hyperspectral imager (CS-HSI) operating in the long wave infrared (LWIR) has been developed for low-cost, standoff, wide area early warning of chemical vapor plumes. The CS-HSI employs a single-pixel architecture achieving an order of magnitude cost reduction relative to conventional HSI systems and a favorable pixel fill factor for standoff chemical plume imaging. A low-cost digital micromirror device modified for use in the LWIR is used to spatially encode the image of the scene; a Fabry-Perot tunable filter in conjunction with a single element mercury cadmium telluride photo-detector is used to spectrally resolve the spatially compressed data. A CS processing module reconstructs the spatially compressed spectral data, where both the measurement and sparsity basis functions are tailored to the CS-HSI hardware and chemical plume imaging. An automated target recognition algorithm is applied to the reconstructed hyperspectral data employing a variant of the adaptive cosine estimator for detection of chemical plumes in cluttered and dynamic backgrounds. The approach also offers the capability to generate detection products in compressed space with no CS reconstruction. This detection in transform space can be performed with a computationally lighter minimum variance distortionless response algorithm, resulting in a bandwidth advantage that supports efficient search and confirm modes of operation.

Copyright © 2022 Society of Photo-Optical Instrumentation Engineers. This paper was presented at the SPIE Defense + Commercial Sensing, 4-7 April, 2022, Orlando, FL (Paper No. 12094-27), and is made available as an electronic reprint (preprint) with permission of SPIE. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.