Publication
Abstract
Adaptive optics provides improved resolution in ophthalmic imaging when retinal microstructures need to be identified, counted, and mapped. In general, multiple images are averaged to improve the signal-to-noise ratio or analyzed for temporal dynamics. Image registration by cross-correlation is straightforward for small patches; however, larger images require more sophisticated registration techniques. Strip-based registration has been used successfully for photoreceptor mosaic alignment in small patches; however, if the deformations along strips are not simple displacements, averaging can degrade the final image. We have applied a non-rigid registration technique that improves the quality of processed images for mapping cones over large image patches. In this approach, correction of local deformations compensates for local image stretching, compressing, bending, and twisting due to a number of causes. The main result of this procedure is improved definition of retinal microstructures that can be better identified and segmented. Derived metrics such as cone density, wall-to-lumen ratio, and quantification of structural modification of blood vessel walls have diagnostic value in many retinal diseases, including diabetic retinopathy and age-related macular degeneration, and their improved evaluations may facilitate early diagnostics of retinal diseases.
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).