Publications > High speed VNIR/SWIR HSI sensor for vegetation trait mapping

High speed VNIR/SWIR HSI sensor for vegetation trait mapping

Publication

Publication

Abstract

A high-speed visible/near infrared, shortwave infrared (VNIR/SWIR) hyperspectral imaging (HSI) sensor for airborne, dynamic, spatially-resolved vegetation trait measurements in support of advanced terrestrial modeling is presented. The VNIR/SWIR-HSI sensor employs a digital micromirror device as an agile, programmable entrance slit into VNIR (0.5–1μm) and SWIR (1.2–2.4μm) grating spectrometer channels, each with a two-dimensional focal plane array. The sensor architecture, realized in a 13 lb package, is specifically tailored for deployment on a small rotary wing (hovering) unmanned aircraft system (UAS). The architecture breaks the interdependency between aircraft speed, frame rate, and spatial resolution characteristic of push-broom HSI systems. The approach enables imaging while hovering as well as flexible revisit and/or foveation over a region of interest without requiring cooperation by the UAS. Hyperspectral data cubes are acquired on the second timescale which alleviates the position accuracy requirements on the UAS’s GPS-IMU. The sensor employs a simultaneous and boresighted visible context imager for pan sharpening and orthorectification. The data product is a 384×290 (spatial) ×340 (spectral) format calibrated, orthorectified spectral reflectivity data cube with a 26×20° field of view. The development, characterization, and a series of capability demonstrations of an advanced prototype VNIR/SWIR HSI sensor are presented. Capability demonstrations include ground-based testing as well as flight testing from a commercial rotary wing UAS with remote operation of the HSI sensor via a dedicated ground station.

Copyright © 2019 Society of Photo-Optical Instrumentation Engineers. Presented at SPIE Defense and Commercial Sensing, Published in SPIE Proceedings Vol. 10986, April, 2019. This paper is made available as an electronic reprint (preprint) with permission of SPIE. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.