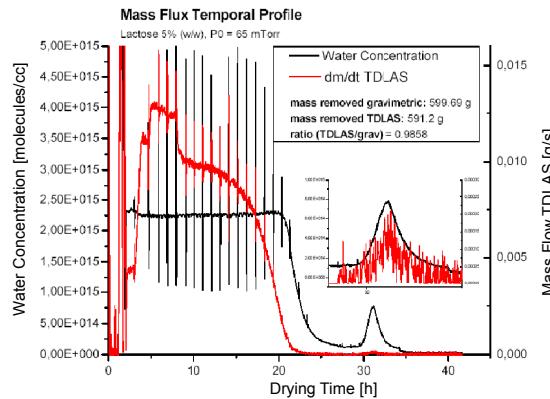
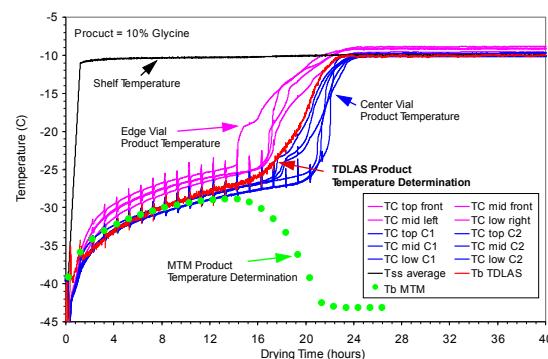

LyoFlux® – TDLAS Water Vapor Mass Flow Monitor

- Continuous, non-intrusive monitoring of lyophilization processes
- Applicable to lab, pilot and production dryers to monitor process scale-up



- Water vapor, $[H_2O]$, flow velocity, (V) & water mass flow (dm/dt) measurements
- Continuous mass balance determination
- Determination of:
 - Primary & secondary drying endpoints
 - Average product temperature
 - Average product resistance
 - Vial heat transfer coefficients
 - Freeze dryer performance qualification


Tunable Diode Laser Absorption Spectroscopy Sensor Control Unit

Freeze Dryer Measurement Interface

$[H_2O]$ & Mass Flow Rate Measurements

Primary Drying Product
Temperature Determination

Point of Contact: Bill Kessler, kessler@psicorp.com, t 978-738-8253

LyoFlux® – Specifications

A. Measurement Specifications

- 1. Detection method : Near-IR Tunable Diode Laser Absorption Spectroscopy (TDLAS)
- 2. Measurement gas : water vapor (H₂O)
- 3. Sample Gas (in spool) : nitrogen (N₂) and water vapor (H₂O)
- 4. Sample Gas Pressure (in spool) : <500 milliTorr
- 5. Measurement Gas Temperature : -40°C - +40°C
- 6. Measurement Range (H₂O) : ~3 - 500 mTorr
- 7. Measurement Range (velocity) : ~1.5 - 300 meters/second
- 8. Mass Flow : ~0.001 - 2.5 grams/second
- 9. Accuracy (3-shelf sublimation test) : + 7% compared to gravimetric (average)
(shelf temp: -10, -5, 0°C, chamber pressure: 65, 100, 200 mTorr)
- 10. Response Time : < 60 seconds
- 11. Data Output : [H₂O]: recorded in a comma
: velocity: separated variable
: mass flow: (CSV) data file

B. Measurement Spool Requirements

- 1. Four (4) optical access ports (2 lines-of-sight)
- 2. Mounting flanges for two (2) optical transmitters and two (2) receivers
- 3. Two (2) anti-reflection (AR) coated sight glass windows for the transmitter optical access ports
- 4. Flow valve downstream of the optical access for zero-flow measurement
(typically included as a lyophilizer butterfly or mushroom isolation valve)
- 5. Wetted components: AR-coated BK7 glass, viton o-ring, 316 stainless steel

C. Sensor Inputs/Outputs

- 1. Optical output: FC/APC fiber optic bulkhead union (2)
- 2. Electrical I/O: 3-pin Lemo connector (detector bias/photocurrent) (2)
- 3. Nitrogen purge gas: SCU: ~ 1-2 SLPM, <10 PSIG, 1/4" compression fitting inlet: OMI: ~ 1-2 SLPM, <10 PSIG, 1/4" compression fitting inlet (valves, tubing and flow meters for the purge gas must be provided by the customer; N₂ purge gas dewpoint <-60°C)

D. Software

- 1. LyoFlux 200A
- 2. TDLAS Sensor Control, Data Acquisition, Data Analysis, Display and Output
- 3. Graphical User Interface (GUI) Control
- 4. Automated System Startup
- 5. Automated system self check
- 6. Automated data acquisition and data processing
- 7. Continuous monitoring of a water vapor reference absorption cell located in the sensor control unit
 - a. Diode laser wavelength reference
 - b. System health monitor
- 8. Software electronic security
 - a. Administrator access and control
 - b. User sign-on required
 - c. PSI system setup and diagnostic access

The LyoFlux sensor is a Class 1 laser device.

Point of Contact: Bill Kessler, kessler@psicorp.com, t 978-738-8253