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Presentation Outline

• Background of PDT and production of singlet oxygen

• Early light sources and observation

• Large frame laser sources

• Miniature diode lasers

– Fiber coupled devices

– Singlet oxygen dosimetry

• Other sources discussed at this conference

– Light emitting diodes

– Two photon sources

– Radiation sources (x-ray and Cherenkov)

– Solar radiation

• Summary
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Early Sources and Observations

• In 1900, Oscar Raab, a medical student studying the effect of 
acridine on parmecia observed that light was required to inactivate 
paramecia. 

• In 1924,  Policard observed red fluorescence from UV excited 
hematoporphyrin in sarcoma of laboratory rats, implying that 
fluorescence might be able to visualize tumors. 

• In 1976, using a red filtered slide projector in an in-vitro study, 
Weishaupt et al. observed that cancer cell killing required singlet 
oxygen. 

• Since these early observations numerous excitation sources have 
been applied to laboratory and clinical studies. Dosimetry 
continues to be a major challenge in terms of treatment outcome 
prediction
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Production of Singlet Oxygen
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Example of Argon Ion Laser-pumped Dye Laser
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• Large and required “care and feeding”
• Provided tunable CW output from 570-700 nm
• Required ~ 50kW of electrical power and high volume water cooling
• System costs ≥ $50K
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Diode Lasers Bring Unique Capabilities to PDT

VG-2019-85

• Compact, electrically efficient
• Fiber coupled 
• Multiple wavelengths that cover PDT photosensitizers
• Pulsed and CW operation 
• Extremely reliable and stable output 
• Appropriate for laboratory and clinical applications
• Inexpensive ~ $1K
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Application of Diode Lasers to

PS and Singlet Oxygen Dosimetry
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Spectral Discrimination of Singlet Oxygen from PS
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Time-resolved Detection for Singlet Oxygen

• Pulsed Diode Laser ���� “Prompt” Dye fluorescence

• Photon Counter with optical filtering ���� Singlet Oxygen Monitor
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Method we and others have used in the past to detect singlet oxygen in-vivo
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Singlet Oxygen Emission Profiles

Spectral Profile
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In-vitro Data Showing Temporally- and Spectrally-Resolved 
Detection of both PS and Singlet Oxygen

(10 uM BPD in PBS) 
VG-2019-85
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Studies with an Avalanche Photodiode (APD) Camera 
for 2D Imaging of Singlet Oxygen
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Camera can be gated up to 100kHz framing rate
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Image and Time-resolved Intensity Observed with 
APD Camera for 5 us Laser Pulse

(3µM BPD in methanol)
VG-2019-85

• Cuvette was masked with 3mm triangle

• Delay of 0.5 us camera gate was varied 
from 0 to 20 us

• Time profile similar to that obtained 
with PMT and agrees with model

Laser 
pulse
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In-vivo Images of PS and Singlet Oxygen from
Two Tumor-laden Mice
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First image: Pulsed diode laser used, camera viewed both within and after laser pulse

Second image: CW diode laser used, camera gated to 100 kHz, essentially cw viewing
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Integrated Imaging and Point Sensors
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• New camera, cooled to -80 C (low dark count), 85% QE, and resolution < 50 µm

• Filtered to observe singlet oxygen at 1.27 um

• PMT channel provides simultaneous spectra of PS and singlet oxygen
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In-vivo Measurements of PS and Singlet Oxygen

• PMT used to determine the PS emission spectrum

• Visible wavelength camera used to obtain PS image

• IR camera used to image PS + Singlet Oxygen (1.27 µm)

• All three detectors operate simultaneously

• A 2-D image with cw diode laser PDT source obtained in ~30s
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PS and Singlet Oxygen Spectrum from a Mouse
7 minutes after Injection of BPD (2mg/kg)

Laser Power: 39 mW
VG-2019-85
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PS and 1O2 Images of a Mouse after BPD Injection

PS + 1O2 PS
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Subtracted Image
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Other PDT Light Sources Discussed at IPA

• Two photon excitation

– Deeper penetration

• X-ray sources

– Synergistic effects of ionizing radiation and PDT

– Deep in tissue treatment

• Cerencov radiation

• Solar radiation

– Longer duration treatments may offer less painful treatments for skin lesions

• Light Emitting Diodes

– Low cost, appropriate wavelengths, compact 
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Summary

• PDT light sources have advanced from high power discharge 
lamps to miniature coherent and incoherent fiber-coupled devices

• Progress in these light sources have greatly advanced both our 
understanding of the PDT mechanisms and kinetics

• Modern light sources are facilitating both laboratory studies and 
clinical treatments
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