# Cable Resistance in Spacecraft Deployable Mechanisms

Brian Schweinhart, Ziv Arzt, Brendan Nunan, Alex Mednick Physical Sciences Inc. Nathan Pehrson, Ben Urioste Air Force Research Laboratory AIAA Scitech Forum 2022, January 3-7

Copyright © by Physical Sciences Inc. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.



## Introduction

VG-2021-214

- Objective: Provide the space engineering community with a reliable and methodical way to predict these forces early in the mechanism design process
- Approach: Layout a methodology to characterize cables and record their torque response in deployment systems



2 Approved for public release; distribution is unlimited. Public Affairs release approval # AFRL-2021-4175



## Why Does This Matter?

- Resistive torque defined late in the design cycle
- High margins are applied to account for uncertainty
- Cables experience creep effects from long term storage



3 Approved for public release; distribution is unlimited. Public Affairs release approval # AFRL-2021-4175



## Methodology

VG-2021-214



4 Approved for public release; distribution is unlimited. Public Affairs release approval # AFRL-2021-4175

## **Cantilever Bending Experiment**



5 Approved for public release; distribution is unlimited. Public Affairs release approval # AFRL-2021-4175

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS | AIAA.ORG



VG-2021-214

## **Cantilever Bending Experimental Results**

VG-2021-214



20 AWG PVC Wire (50 mm length)

Approved for public release; distribution is unlimited. Public Affairs release approval # AFRL-2021-4175 6



## **Analytical Cable Bending Model**

VG-2021-214

Analytical model alongside an optimization algorithm determined best-fit effective material properties



7 Approved for public release; distribution is unlimited. Public Affairs release approval # AFRL-2021-4175



## **Analytical Cable Model Assumptions**

- Cantilevered cable is discretized into a set of elements
- Shear and axial deformations neglected



- Each element assumed to be in pure bending
- Analytical model produces results within 1% of FEA simulation



8 Approved for public release; distribution is unlimited. Public Affairs release approval # AFRL-2021-4175

## **Cantilever Results**



9 Approved for public release; distribution is unlimited. Public Affairs release approval # AFRL-2021-4175

## **Constitutive Material Model**

VG-2021-214

#### Material model approximates how the cable deforms



10 Approved for public release; distribution is unlimited. Public Affairs release approval # AFRL-2021-4175



### **Viscoelastic Cantilever Results**



Deflection held for 40 hours

VG-2021-214

Approved for public release; distribution is unlimited. Public Affairs release approval # AFRL-2021-4175 11

## **Two-Panel Representative Deployment Test**

VG-2021-214



12 Approved for public release; distribution is unlimited. Public Affairs release approval # AFRL-2021-4175



## **Two-Panel FEA Model**





13 Approved for public release; distribution is unlimited. Public Affairs release approval # AFRL-2021-4175

## **Two-Panel Results**



14 Approved for public release; distribution is unlimited. Public Affairs release approval # AFRL-2021-4175



## **Comparison of Hybrid and Elastoplastic Model**

VG-2021-214



15 Approved for public release; distribution is unlimited. Public Affairs release approval # AFRL-2021-4175



## Conclusion

- Methodology for predicting the force response of cables in a representative deployment system
- Captured a cables bending response
- > Developed an analytical best-fit beam bending model
- Used the calibrated material properties with an FEA model to predict the response of a representative two-panel deployment system

16 Approved for public release; distribution is unlimited. Public Affairs release approval # AFRL-2021-4175



## **Future Work**

- Test complex and unique cables
- Expand FEA model to other deployment setups and more complex systems
- Improve accuracy with a more robust algorithm
- Account for the thermal environment of space and longer periods of creep



17 Approved for public release; distribution is unlimited. Public Affairs release approval # AFRL-2021-4175



#### AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS