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Abstract: We describe a set of methods for locating and quantifying natural gas leaks using a small

unmanned aerial system equipped with a path-integrated methane sensor. The algorithms are

developed as part of a system to enable the continuous monitoring of methane, supported by a

series of over 200 methane release trials covering 51 release location and flow rate combinations.

The system was found throughout the trials to reliably distinguish between cases with and without

a methane release down to 2 standard cubic feet per hour (0.011 g/s). Among several methods

evaluated for horizontal localization, the location corresponding to the maximum path-integrated

methane reading performed best with a mean absolute error of 1.2 m if the results from several flights

are spatially averaged. Additionally, a method of rotating the data around the estimated leak location

according to the wind is developed, with the leak magnitude calculated from the average crosswind

integrated flux in the region near the source location. The system is initially applied at the well pad

scale (100–1000 m2 area). Validation of these methods is presented including tests with unknown

leak locations. Sources of error, including GPS uncertainty, meteorological variables, data averaging,

and flight pattern coverage, are discussed. The techniques described here are important for surveys

of small facilities where the scales for dispersion-based approaches are not readily applicable.

Keywords: source estimation; methane emissions; natural gas; leak surveys; inverse emissions;

MONITOR; UAV; LDAR

1. Introduction

The oil and gas industry is one of the major methane source sectors, contributing an estimated

24% of global anthropogenic emissions [1]. The industry contains a wide network of pressurized

equipment which is inherently prone to the risk of leaks. Evidence points to growing U.S. oil and gas

methane emissions [2] driven by the significant increase in U.S. production in recent years. Natural gas

systems contain a range of leaks with magnitudes ranging from low levels to disproportionally high.

There is evidence that high-emitting sites have a stochastic nature [3], making it difficult to knowwhere

to mitigate without continuous monitoring. Additionally, system-wide mitigation of the majority of

source emission levels is beneficial in addition to reducing super-emitters [4]. Both stochastic and more

persistent leaks point to the need for continuous monitoring systems to provide operators data they

can reliably act on as part of a leak detection and repair (LDAR) program.
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There is considerable awareness and interest in mitigating methane from natural gas, with U.S.

leak rates of 2.3% of total production [5]. In the past, the industry has been successful in accomplishing

voluntary reductions [6]. However, there is a significant technology gap in terms of monitoring systems

to effectively detect leaks when they occur, locate them autonomously with the accuracy needed for a

repair crew to find the leak, and quantify the leak rate to determine the priority for repair. The current

standard for detecting and locating leaks is to manually survey equipment at close-range using infrared

cameras with trained operators. If used farther away, the method’s sensitivity depends on distance,

temperature, thermal background, and wind velocity [7], which are variable in real-world conditions.

Screening individual components by measuring local concentration is also common for locating leaks

and ranking their severity. A more accurate measurement can be obtained by following up screening

using a Hi Flow sampler. Overall, the process is expensive, often insensitive, and slow to detect leaks.

Methods that do not require human intervention could help reduce cost considerably and provide

continuous measurements rather than being confined to individual campaigns.

Atmospheric sampling methods are capable of both quantifying and locating sources and

encompass a wide variety of techniques depending on the application [8], often using a fast laser

sensor and a wind measurement as the data source. Research methods so far have mainly focused on

use during field campaigns and have significant tradeoffs between accuracy, speed, and applicable

scale. Methods combining wind information with an inverse plume model have been demonstrated

on aircraft [9], vehicles [10,11], and unmanned aerial systems [12] with data often collected at some

distance downwind. Optical remote sensing is another demonstrated technique typically done at the

fenceline [13]. All of these methods have relatively high quantification uncertainties and have not been

used to localize at single meter scales. Small unmanned aerial systems (sUAS) are attractive both for

their automation capability and because they can generate high resolution measurements in the direct

vicinity of a source. One study shows infrared camera-equipped drones compare favorably in terms

of lowest cost expenditure [14]. However, methods need to be developed to handle the unique data

generated with a sUAS and then validate that the system works in a variety of conditions.

This paper is part of a study developing a sUAS-based methane monitoring system. An upcoming

work [15] describes the laser-based methane sensor, sUAS, and flight pattern development in more

detail. Here, we describe and validate methods for methane source localization and additional methods

besides mass balance [12] for quantification. We investigate steady, single leaks at the well pad scale,

and aim for an algorithm that locates to ~1 m, has few false positives in detecting leaks, and quantifies

leaks with reasonable accuracy. Our approach focuses on simple, data-driven algorithms that can be

used operationally and which leverage the dense measurements that a sUAS can obtain. For leak

localization, we test using simple wind back-trajectories and alternatively using the location of methane

maximum. For leak quantification, we test a correlation-based method and a modified mass balance

approach. Finally, a skewness algorithm is introduced for refined leak detection.

2. Datasets and Procedures

The measurement system used, in brief, was based on a new version of the Remote Methane

Leak Detector (RMLD) [16,17] with miniaturized optics and electronics. The RMLD is a sensitive and

gas-specific methane sensor based on infrared backscatter tunable diode laser absorption spectroscopy

(b-TDLAS). It measures path-integrated methane concentrations and was equipped facing downwards

on a small quadrotor, together forming the RMLD-UAV [15]. Data presented in this paper were

obtained during three controlled release field experiments. First, early testing was conducted on a

9.2 m diameter rotating boom platform over gravel (19 May 2016), at a site in Hitchcock, TX. Second,

a series of releases with randomly chosen leak rates and locations (05–19 June 2017) was conducted over

grass at the same site. Finally, preliminary testing (25–26 May 2017) and a blind test (24–28 July 2017)

were conducted at the Methane Emissions Technology Evaluation Center (METEC) near Fort Collins,

Colorado. Wind measurements were obtained with a Gill WindSonic 2D sonic anemometer mounted

on the ground at a height of 81 cm, typically near the corner of each site.
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At the Texas site, controlled releases used 99.5% pure methane (Airgas CP300). Flows were

allowed to stabilize and then metered using a Dwyer RMB-52 flow meter. To account for the gas

being methane instead of air, flow rates were corrected by a factor of
√
(1/S.G.) = 1.34, where S.G. is

a representative specific gravity of CH4 = 0.5537. At METEC, natural gas from a pipeline was used

with the methane fraction (0.84–0.86) measured by gas chromatography by the METEC operators.

Flow rates were controlled with a set of orifices. METEC contains three separate pads, designated here

as Pad 1, Pad 2, and Pad 3. Pads 1 and 2 both contain a wellhead, separator, and tank. Pad 3 was split

into three sub-pads, containing three wellheads, two separators, and two tanks, respectively.

An important aspect of the tests is how release locations were recorded along with how the

RMLD measurement was geolocated. For the rotating boom, the sensor location was calculated based

on the boom arm radius and speed of rotation. The release location was recorded relative to the

center of the boom platform. Both are expected to be accurate within ~0.3 m. For the RMLD-UAV

measurements, location was based on the quadrotor GPS. A low-cost GPS receiver was used, since a

high accuracy unit would be the dominant cost compared to the other components of the sUAS

platform [18]. While GPS often has errors <1 m, this depends on multiple factors and can be much

higher for individual measurements. Therefore, a grid system was used to record the release location

for both Texas site and METEC. The RMLD-UAV starting position was recorded relative to the corner

of the grid, which offsets any GPS bias during that flight. The uncertainty implications for each case

are described in more detail in Section 4.3.

An example of the data obtained during a controlled release trial at the Texas site is shown

in Figure 1, with the RMLD-UAV flying at a constant altitude of 6.5 m. There are several distinct

peaks of methane significantly above the background seen in the time series (Figure 1a). Takeoff and

landing are also visible, since the methane column increases with altitude above ground. Wind vectors

from the ground-based sensor, displayed at the RMLD-UAV location at the corresponding time,

show a southerly wind direction along with a typical level of wind variability (Figure 1b). Since the

spatial scale is small, these fluctuations in wind direction are important since they can cause significant

changes to the plume location. Methane data are treated spatially using both grid averaging (Figure 1c),

where the mean value is calculated within each grid cell and undefined where no data are available,

and interpolation using a natural neighbor technique (Figure 1d). Wind information is treated in

the same way, except using vector averaging to preserve the correct wind direction. The maps are

calculated using a 0.3 m by 0.3 m resolution grid encompassing the extent of the flight. In either of the

methane maps, a distinct plume structure in the vicinity of the leak location is visible.

Flight procedures consist of a programmed 12 m by 12 m flight pattern scanning the well pad

footprint followed by one or more finer—5m by 5m—flight patterns. The fine scans are centered on the

methane maximum from the initial flight, which is the initial guess of the leak location. There is some

randomness to the flight pattern due to wind while the sUAS is in the air and time spent searching for

waypoints [15]. Figure 2 illustrates this procedure, where the methane maximum was detected over

the tank guiding the follow up measurements with a second, finer scan. The image overlay can also

be seen, here for METEC, Pad 1. Data for these plots is based on synchronizing the RMLD-UAV and

wind sensor data to a common 3 Hz time basis.
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Figure 1. Sample data during a controlled release: (a) methane time series; (b) wind vectors shown

based on unmanned aerial system (UAS) location (downsampled for clarity); (c) methane concentrations

averaged on a regular grid; (d) interpolated methane data. The black ‘x’ indicates the actual leak

position. Vertical dashed lines in (a) represent takeoff and landing. Red lines indicate the Remote

Methane Leak Detector (RMLD)-unmanned aerial vehicle (UAV) flight tracks.

 

Figure 2. Case study at Methane Emissions Technology Evaluation Center (METEC) showing the flight

procedure and two flights superimposed on one another. The initial flight detected a leak over the tank,

which was followed by a second, more focused flight. Red lines indicate the RMLD-UAV flight tracks.
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3. Algorithm Development

3.1. Localization Algorithms

Two localization algorithms were developed and are described here. Their performance,

sensitivity to parameter selection, and overall discussion are described in Sections 4.1, 4.3

and 5, respectively.

The first method is based on projecting lines upwind from measurement locations with elevated

methane concentrations according to the wind direction at that time. This approach uses variations

in wind, which influence plume shape, to help extract information about where the source is likely

located. Lines are discretized onto a grid using a ray tracing algorithm [19], and the grid cell with

the most intersections is the probable leak location. The physical basis was also well articulated by

Hashmonay and Yost [20] in the context of open-path FTIR measurements. Here, the RMLD-UAV

instead directly measures vertical columns and is free to travel horizontally and vertically. Therefore,

it allows a much higher vertical and horizontal resolution and does not require any reconstruction

across beam paths. We use here a 0.3 m grid spacing and 20 ppm-m concentration enhancement

(above the median in-flight reading) threshold set based on the maximum level of background sensor

noise and altitude-driven variation. A case is shown from the rotating boom data where there was

a southwesterly wind (Figure 3). The wind direction is apparent since the number of intersections

decreases quickly in the crosswind direction and more slowly in the along-wind direction. The lines

projected upwind from elevated methane points converged within 0.55 m of the actual leak.

Figure 3. Wind-based location method: Lines projected upwind from high methane points converge

on the leak source. The red circle represents the known actual leak location (here 1 m south and 1 m

east of center), and the black x shows the system-estimated leak location.

The second method was already introduced with the tank example in Figure 1; namely to

estimate the leak location based on where methane concentrations are highest. This is enabled by

the fact that the RMLD-UAV can directly fly over leaks, which is not the case with a typical fixed

sensor setup. Within this method, we compare taking the highest methane concentration directly,

after grid averaging, or after interpolation. The first is expected to be more sensitive while the

gridded or interpolated methods may indicate a more persistent hotspot since a leak is quickly,

though inconsistently, dispersed as one moves downstream of the source. From testing, the three

approaches could be significantly different for a given case, but each has similar performance on

average. Figure 4 shows a typical case at a well pad with two separators, with patches of enhanced

concentration driven by turbulent changes in wind. Here all three methane maxima produced different

estimates to the left of the rightmost separator. The real leak position is shown for comparison. For this
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application, as with most where the area of the equipment is sparse compared to the overall well

pad area, the location of the equipment in combination with the algorithmic methods points to the

observed location to be the southern portion of the separator on the right.

 

Figure 4. Maxima-based locationmethod: The highest methane concentration is seen slightly southwest

of the rightmost separator, which is flagged as the probable leak location, where right corresponds

with east and up with north. Here, the location of the maximum methane on this interpolated grid

is shown with a triangle. This is shown in comparison to the real leak location designated with a

square. Red lines indicate the RMLD-UAV flight tracks. The dominant wind direction was measured

to be southeasterly.

3.2. Quantification Algorithms

As with the localization algorithms, two separate methods were developed for quantifying leak

rates, with the results and discussion given in the following sections.

The first quantification method is based on correlating wind speed and methane enhancements

against flow rate based on a set of test data, and verifying that the same relationship is relatively robust

to different sites or atmospheric conditions. These relationships are developed based on data from the

Texas site, including 33 controlled release trials spanning flow rates from 0 to 67 standard cubic feet

per hour (SCFH). For illustration, we show the relationship between flow rate and the peak methane

enhancement, defined as the highest grid-averaged methane reading obtained during a series of flights,

as well as the relationship between wind speed and peak methane (Figure 5). For flow rate versus

peak methane, a moderately correlated, linear, relationship is seen. Wind speed (WS) versus peak

methane shows a 1/WS relationship. Both of these relationships are consistent with the dispersion

literature, for instance, a reduced form of the Gaussian plume equation (Cp = SE

2πσyσzU
) [21]. Here,

the sensor measures a methane column, already integrating vertically and removing the effect of

σz. Additionally, it is in a situation measuring directly near leaks where the plume is very narrow,

instead of being some distance downwind. Therefore, we do not attempt to directly estimate horizontal

dispersion and instead assume the peak methane dominates the crosswind distribution to derive the

simple relationship

SE ∼ Cp · U (1)

where SE is the source estimate, Cp the peak methane concentration, and U the mean speed.
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Figure 5. Components of the correlation-based quantification method: flow rate is derived from

the combination of (a) peak methane (ppm-m) versus known flow rate (SCFH); (b) peak methane

versus wind speed, here shown separately for illustration and with the linear regression in (a) forced

through background. The combined relationship, with refinements described in the text, is shown in

Figure 9. For (a), regression yielded (±2 σ) a slope of 9.94 ± 4.78 ppm-m SCFH−1 and intercept of

35 ± 170 ppm-m. For (b), the coefficients were 615.6 ± 243.9 ppm-m m s−1 and 71.5 ± 144 ppm-m.

Several optimizations also helped to reduce the variance between the estimated and true leak rate.

First, Cp was replaced with the cumulative concentration for all clearly identifiable peaks (defined by a

prominence of at least 50 ppm-m) instead of using only the single highest point. Since the cumulative

concentration is expected to increase with longer or multiple flights, this was then divided by the

number of methane measurements to ensure that the estimate will not statistically decrease or increase

with measurement duration, as long as flight patterns are consistent. We also note that this is unlike Cp

in the Gaussian method, since it is taken directly from the data instead of a time-averaged Gaussian

fit. Secondly, U was calculated using a centered moving average with an averaging timescale of 15 s,

a rough estimate of the time needed for the plume to propagate over a well pad, since there is a variable

time lag from the wind sensor depending on the wind direction.

The second method was based on a variation of the mass balance method widely used in aircraft

studies. In that context, uncertainties are typically in the range 10–30% with suitable atmospheric

conditions and flight patterns [22,23]. Our approach was tailored to the sUAS application and inspired

in part by the work of Foster-Wittig et al. and Albertson et al. [21,24]. Instead of the standard

approach [12], we rotate the data around the estimated leak position derived from the maximum-based

localization algorithm, decomposing position into alongwind (x̂) and crosswind (ŷ) components

(Figure 6a). x̂ ≥ 0 is defined to be downwind, with x̂ < 0 upwind. The data are then discretized onto a

grid with 0.3 m spacing, again using natural neighbor interpolation (Figure 6b). Crosswind integrated

values are then derived according to

SE = ∑(∆Cdŷ )U (2)

where SE is the estimated leak rate, ∆C the gridded methane enhancement, dŷ the resolution, and,

U the mean wind direction. Background methane was calculated using a moving 50th percentile

methane concentration filter so that cases with no leak will average to zero. We empirically found

that the 95th percentile of the values over the domain was a suitable estimate of the final leak rate

(Figure 6c). Since the wind is turbulent, and there are location errors, we include some portion of what

is nominally ‘upwind’. Considering multiple crosswind values also helps account for variation in how

flights patterns are conducted.
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Figure 6. Crosswind-integration rate method: (a) individual measurements after rotation; (b) gridded

interpolation of a; and (c) crosswind integrated flux. The horizontal dashed line in (c) indicates the

estimated leak rate.

3.3. Detection Algorithm

While the quantification algorithms can provide an estimate of whether there is a leak or not,

a more sensitive metric was also investigated. Testing showed that visual interpretation of maps such

as Figure 4 could determine whether a leak is occurring based on the distribution of colors, even below

the detection limit of either quantification algorithm. Algorithmically, a similar effect can be analyzed

using the third standardized moment, or skewness. The RMLD-UAV flying at a constant altitude

should have concentrations that are roughly normally distributed around the background, while the

presence of a nearby leak will skew the distribution towards high values. This approach has also been

used for leak detection using fixed laser monitoring [25], with a skewness threshold separating leaks

from non-leaks. Here, data are filtered to where the RMLD-UAV is at least 2 m off the ground, and the

skewness threshold is obtained using the Texas development data.

4. Algorithm Performance

4.1. Leak Localization

The wind-based algorithm was developed originally on the basis of the rotating boom data,

with errors of ~1 m. For the RMLD-UAV flights at the Texas site, we found the errors to be too large

for our application, with a mean of 5.1 m and max of up to 14.3 m (Figure 7). Therefore, the algorithm

estimating location based on methane maximum was developed. Comparing results when calculating

the maximum from the 3 Hz, grid averaged, or interpolated methane data, each were within 10% of

one another. It was also found that performing a spatial average of the estimates from each individual

flight (typically 3 to 6 were conducted) provides a ~20% improvement compared to calculating the max

based on all data together, likely by helping to cancel position biases for individual flights. Figure 7

shows the result when using the 3 Hz method, with the test data showing errors were all less than 4.6 m

and with a mean of 1.8 m. Therefore, this was selected as the primary method for localization. This also

allows for a method that has no grid or interpolation parameters and can be calculated rapidly.

To validate the algorithm, the same analysis is applied to testing at METEC (Figure 8). Here,

the max-based algorithm had a mean absolute error of 1.2 m and a worst case of 2.22 m. Vertical lines

are drawn representing the fact that there can be errors in x and y; therefore, up to 1 m in each would

generate an absolute error of 1.41 m. We label values within this threshold as within ±1 m, referring to
the accuracy of the individual components x and y. It can also be seen that the max-based algorithm

was accurate to within ±2 m for all 17 cases. An additional estimate, calculated prior to revealing the

blind test, was made based on snapping the combination of wind-based and max-based to the nearest

grid cell containing equipment. This judgement was done manually using heatmap pictures like in
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Figure 4, including both location methods. The results of the blind test showed that this reduced the

mean error to 1.1 m, with 14 out of 17 test cases identified within ±1 m of the true location. One case

was made worse by the snapping procedure, since the wrong piece of equipment was identified.

If snapping had been applied directly to the maximum method without also weighing the wind-based

method, it would have produced a larger benefit. The wind-based algorithm by itself was again too

noisy for these purposes, with a mean error of 3.26 m (more than twice the max-based algorithm and

three times the estimate if snapping is used).

 

Figure 7. Performance in estimating leak position on the Texas controlled release dataset, using the

(a) wind back-projection and (b) maximum methane-based methods described in Section 3.1.

Absolute errors are shown for both methods.

 

Figure 8. Performance in estimating leak position evaluated at METEC using (a) the wind

back-projection and (b) maximum methane-based methods described in Section 3.1, and (c) estimates

snapped to the nearest grid cell containing equipment. The combined method was within ±1 m for 14

of 17 cases.
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4.2. Leak Detection and Quantification

Two leak rate quantification algorithms were also developed as described in Section 3.2.

Both algorithms require parameter choices, which were obtained using the Texas test data.

The correlation method’s relationship was specified to yield a result in terms of leak rate (SCFH)

with a slope of 1 and intercept of 0, sacrificing slightly on the correlation compared to an unforced

fit. For the rotated flux method, the free parameter is identifying which percentile of the crosswind

integrated leak rates to use. The 95th percentile was selected to yield a slope and intercept near

1:1. The performance on the test data is shown comparing metered leak rates to the estimates for

both algorithms (Figure 9). The correlation-based method has slightly less scatter around the 1:1 line,

but there is not a significant difference in performance on the development dataset.

Figure 9. Leak rate performance using the (left): correlation-based method and (right): rotated-flux

method for 33 scenarios. Dashed lines represent the 1:1 relationship and bounds for ±12 SCFH ±25%.
The correlation-based method is forced though 0 for the development dataset as described in the text.

The same algorithms and parameter choices were then applied to the METEC test site to help

determine if they are robust. The same style plots are shown (Figure 10). Both methods remained

well correlated, with r = 0.84 and 0.85 for the rotated flux and correlation-based methods, respectively.

In terms of flow rates, both had only one point outside the error bounds illustrated with dashed lines.

Besides being at a completely different site, the leak rates evaluated also tended to be lower than in the

development dataset. This may explain why both methods showed a small positive offset, since more

weight was placed on measurements near the detection limit of the algorithm, which was intended to

be near 6 SCFH. In terms of detection, our results had zero false negatives (all 17 leaks detected) and

zero false positives (all 13 zeros correctly identified based on the skewness statistic with a threshold of

1.5). The individual detection results are shown in Figure S4.
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Figure 10. Quantification results during a controlled release validation experiment. The colors reflect

the three different well pads (Pad 1: green, Pad 2: red, Pad 3: blue).

4.3. Component Sensitivity and Uncertainty Analyses

The sensitivity of the algorithms to uncertainty in the input data is now considered.

The components include sensor position, methane reading, and wind direction. Sensitivity to each is

simulated by individually adding bias and noise to the data shown previously. A fourth category is

also considered: namely the amount of flight data used to generate the estimate. Position uncertainty

arises from limitations in GPS when used at small scales due to a variety of factors [26,27]. We simulate

adding 0.9 m of additional location uncertainty in both x and y. Besides GPS error, position errors

can arise from tilt of the RMLD-UAV, causing the laser beam to deviate from pointing straight

downward. Concentration bias is modeled here as a multiplicative factor to simulate sensor slope

over- or -underestimation. The sensitivity to additive bias (e.g., offset drift) is not shown, since the

algorithms are robust against this kind of drift. Wind direction bias could arise if the sensor is not setup

to be aligned perfectly with north. Due to the location algorithm being based on the max methane

location, concentration errors can also propagate into position errors in other ways besides a bias or

normally distributed noise. These include any spurious peaks or if there is optical saturation directly

over a leak. There is evidence of the latter, in that for nearly all cases the highest methane reading

was obtained slightly downwind of the leak position (Figure S2). Atmospheric conditions can also

introduce noise; for instance, downdrafts from the quadcopter rotors or if the methane plume extends

above the height of the sensor. These dynamic effects are not directly modeled in this sensitivity

analysis, though they are captured in the performance observed in our field data.

Note that the data already contain noise, and so a direct uncertainty budget is not attempted. Still,

the sensitivity against reasonable levels of noise helps inform the contributions to the uncertainties in

the localization and quantification algorithms. The sensitivity of the max-based localization algorithm

is shown and was consistent for the development andMETEC datasets (Figure 11). The most noticeable

sensitivity is to position bias, which increased the mean error by approximately 0.6 m. This is smaller

than the sensitivity expected if there were not already errors in the measurement, where adding 0.9 m

to both x and y would result in an error of 1.28 m based on Euclidian distance. Decreasing the amount

of data included also increased the error by around 0.2 m. Smaller sensitivities were seen to position

noise and concentration noise. The algorithm has no sensitivity to fixed concentration biases or any

wind speed or direction noise, since wind is not an input.
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Figure 11. Sensitivity analyses for the maximum-based localization method. The y-axis here represents

the difference in mean error between the data with and without added noise. Position bias: +/−0.9 m
offset to both x and y; position noise: added normally distributed noise (µ = 0 m, σ = 0.3 m);

concentration bias: ×/÷1.05x, concentration noise: added normally distributed noise (µ = 0 ppm-m,
σ = 5 ppm-m), wind direction bias: +/−25 degrees, wind direction noise: added normally distributed
noise (µ = 0 deg., σ = 5 deg.), amount of data: randomly exclude half of the data.

The same analysis is now shown for the rotated flux leak rate method (Figure 12). Here, all the data

inputs show some sensitivity and there was less consistency between the development and validation

datasets. The single largest sensitivity was to wind bias during the development test, which actually

showed an improvement compared to when bias was not added. Position bias, wind direction bias,

and amount of data all lead to both increases or decreases in mean error, depending on the sign of

the noise. This could be the result of compensating for real biases in the input data, or alternatively

correcting for unrelated errors. The tendency for positive errors in the validation dataset likely reflects

the algorithm not having been specifically optimized for that site. For that site, position noise and

wind direction bias were the biggest sensitivities.

The amount of data is now considered further, since it is related to the operation of the RMLD-UAV

system. There may be a tradeoff between the number of flights and accuracy obtained, with different

applications requiring different levels of accuracy and measurement speed. This is analyzed by using

the subset of cases where at least three flights had been conducted. The calculation was repeated

using only the first flight, the first two, the first three, and then all the available flights (Figure 13),

and without changing the algorithm parameters. The mean number of flights per case was 4. Also note

that, for zero leak cases, only one to two flights were conducted, and so the filter by necessity removes

these to keep the number of samples consistent. With just two flights included, the correlation method

performed comparably to with all flights, except skewing towards low estimates instead of towards

high estimates. For the rotated flux method, three flights had the same median as including all flights

but a larger spread. For the maximum based location method, there is a continuing trend towards

lower errors as the number of flights included increased.
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Figure 12. Sensitivity analyses for the rotated flux leak rate method. The same assumptions were

applied as in Figure 11.

Figure 13. Effect on the number of flights on leak estimation accuracy, including quantification

with the (a) correlation-based method and (b) rotated flux method, and localization with (c) the

methane maximum method. On the x-axis is the number of flights included (1, 2, 3, or all flights

available). The dataset includes all cases from Texas and METEC where at least 3 flights was available.

The red line indicates the median, blue box the 25th and 75 percentiles, and dashed lines the 10th and

90th percentiles.

5. Discussion

We return briefly to the two localization and two quantification algorithms presented.

The wind-based localization algorithm performed worse than the maxima-based method for the

RMLD-UAV flights; however, we noted that the former performed better on the ground-based rotating
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platform. This may be because the patterns flown were not optimal for the wind-based method since

they focused primarily on hovering nearby to the leak. In contrast, it is expected that data taken

at least some distance away has a better chance to converge on the leak location as long as peaks

can still be robustly distinguished from background. Comparing the two quantification algorithms,

the correlation-based algorithm as expected showed a slightly better correlation between metered and

estimated leak rates compared to the rotated flux method on the development dataset. Errors for both

methods were well distributed around the 1:1 line, with no outliers. However, both methods needed

to be tested to see how they perform at sites and wind conditions other than where the parameters

were derived. The correlation remained strong (r = 0.85) on the validation dataset, and, despite a

positive bias, results with both methods were generally within ±12 SCFH ± 25%. We expect the

rotated flux method is likely to be more robust over a wide range of wind conditions, since it uses

a mass balance formulation. It is also likely that some wind conditions (specifically, a more-or-less

steady, but not necessarily light, wind) will give better results (for both flux and localization) than the

light-and-variable winds in which most of our measurements were made.

A unique aspect of this system is that it operates so close to leak sources. Physically, the highest

concentration is expected very near to the leak point regardless of atmospheric conditions. This likely

reduces the effect of meteorological conditions and also provides an avenue for handling multiple

leak sources if they are spatially separated. The trials at METEC have already tested a relatively

dense site configuration with three pieces of equipment per 100 m2 pad. A typical well pad is larger

but often less dense, which can be accommodated by the RMLD-UAV since most time is spent only

near where there are leaks. Other benefits are the reduced sensor sensitivity requirements compared

to sensors that detect far downwind of the source and the built-in resistance to detecting off-site

leaks since enhancements strongly decrease with distance from source (correlation-based method) or

generate zero net flux (mass balance-based method). In remote locations, where wind measurements

may not be practical, leak detection and localization could still be achieved since the skewness

and maximum methods do not require this information. Quantification could use gridded wind

products, but with greater uncertainty than if on-site measurements are available. The most common

atmospheric approach for quantification in the literature is the application of plume or puff dispersion

models in analytical or Bayesian frameworks [28]. Many are tested primarily in simulations rather

than real-world experiments, where turbulence fully impacts measurements and there are additional

uncertainties (GPS, tilting, separation between the wind ground-based sensor and moving methane

sensor, etc.). Here we use instead correlation and mass balance methods. The key innovations were

(1) incorporating an algorithm to estimate leak location; (2) using a downwind-crosswind formulation,

which may converge more quickly than when not used in this near-source application; (3) and the use

of a custom sUAS enabling automated sampling and analysis.

Continuing research will work on refining algorithm performance and testing the system over

more leak scenarios and atmospheric conditions. For example, METEC included several tanks but in

general tall or densely spaced equipment could pose challenges for the algorithms and sUAS operation.

In a long-term deployment setting, knowledge of desirable wind conditions can be leveraged to choose

when to target RMLD-UAV measurements. The system will also have to contend with “by design”

emissions, such as from a tank or pneumatic controller. Therefore, testing will include multiple

or fluctuating sources and longer controlled release scenarios. These could add noise or require

longer flight times to accommodate. The algorithms are naturally suited to a probabilistic detection

framework, for instance by the gradient from the maximum concentration point or variations in the

crosswind integrated flux. More data will help determine if these features can accurately capture

periods of greater or lesser uncertainty, and if algorithms parameters can be more tightly optimized.

6. Conclusions

We have demonstrated a simple, data-driven approach for estimating leaks in the natural gas

sector using a small unmanned aerial vehicle system. The algorithms are based on flying directly
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over leaks, in contrast to many techniques which rely on downwind data and dispersion models.

After testing multiple algorithms, we find that using the maximummethane location gives a reasonable

estimate of leak location, and a downwind-crosswind transformed mass balance algorithm is most

consistent for leak quantification. On a blind test on real gas production equipment, localization was

achieved within ±1 m for 14 of 17 leak cases. Quantification was more difficult, but estimated leak

rates were generally within ±12 SCFH ± 25% of metered values and there were no false positives

or negatives, which is important for deployed systems. The greatest uncertainties were ascribed to

sensor position uncertainty, concentration noise, and wind direction based on a sensitivity analysis.

The algorithms described could form the basis of a continuous monitoring system helping to capture

a large fraction of emissions, allowing timely repair and reduction of atmospheric impact from

gas leakage.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4433/9/9/333/s1,
Figure S1: field test locations, Figure S2: all METEC location results, Figure S3: all METEC rotated flux results,
Figure S4: all METEC skewness results.
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