

Guiding skin cancer therapy with combined Confocal-OCT imaging

Nicusor Iftimia*, Aditi Sahu**, Miguel Cordova**, Larissa Pastore**, Gopi Maguluri*, John Grimble*, Mircea Mujat*, Aliana Caron*, Milind Rajadhyaksha**, Chih-Shan Jason Chen**, Christopher A. Barker**

*Physical Sciences Inc.; **Memorial Sloan Kettering Cancer Center

Visit our website: www.psicorp.com

Clinical Need Addressed: Guidance of Nonsurgical Skin Cancer Therapy Approaches

- Non-Melanoma skin cancers (NMSCs): >5 million new cases every year
- Over 60% of the NMSCs are on the head and neck areas
- Surgery is the standard of care for NMSCs
- Surgery is expensive and not desirable for head and neck
- Non-surgical approaches are rapidly advancing: laser ablation, radiotheraphy, PDT, etc.
- Therapy guidance is needed for improved outcome

Solution: Hand-held RCM-OCT imaging - early diagnosis and margins assessment

After Mohs Surgery

After Reconstructive Surgery

After Laser Therapy

RCM-OCT Capabilities

RCM capabilities:

 Enface imaging of the superficial epithelium with high resolution, similar to histology slides

OCT capabilities:

- Cross-sectional imaging of the deeper layers, to <u>></u>1.5 mm
- Visualizes the dermalepidermal junction-crucial for skin cancer therapy decisions
- Visualization of skin perfusion- tissue viability

Same optical path RCM-OCT Implementation

- OCT underutilizes the NA enabling a larger imaging depth
- RCM fully utilizes the NA of the imaging objective and a confocal gate: um scale sectioning

HH Probe Implementation

• Fiber based - both RCM and OCT- improved alignment stability

Instrument Implementation

Imaging performance assessment

Objectives:

- Determine axial-lateral resolution in each imaging mode
- Determine imaging depth

Results:

- Resolution: RCM: <0.68 μm lateral
 OCT: ~6 μm lateral
- Imaging depth: ~ 250 μm in RCM mode
 ~1.25mm in OCT mode

Clinical Evaluation/Study Objectives

- Reflectance Confocal Microscopy (RCM) and Optical Coherence Tomography (OCT) have the ability to identify Basal Cell Carcinoma (BCC) and estimate their invasion depth
- Laser ablation has been shown to treat superficial and early nodular BCCs under the guidance of RCM, while radiation therapy (RT) has shown to be effective in treating deeper lesions

AIMS

- Aim 1: Use RCM-OCT to select thin BCCs for either laser ablation or radiation therapy and establish laser fluence or RT dose
- Aim 2: To use RCM-OCT to monitor the outcome of the treated BCCs

RCM-OCT Clinical Evaluation

- 1. >100 patients were evaluated to date
- 2. Combined RCM/OCT imaging features, as shown in the table below, enabled accurate identification of NMSC presence and invasion depth evaluation, both confirmed by histopathology
- 3. High specificity (94.1%) was observed in the clinically suspicious lesions (n=185), in intact skin

RCM Features	OCT Features	C) OCT_Depth_C	• • • • Coserved Linear
Epidermal streaming	Hyporeflective or gray structures attached to the dermal-epidermal junction (DEJ)	80.20	
Tumor nests	Disruption of the DEJ	602.20	
Cordlike structures	Hyporeflective or gray ovoid structures in the dermis	401.00	
Nuclear palisading at tumor edge	Dark peritumoral rim (clefting)	200.00 * 1500.00 1500.00 2000.00 Histo_Depth_Overall	
Dark peritumoral rim (clefting)	Hyper-reflective <u>peritumoral</u> stroma	R value	0.86
Stroma with plump cells and	Hypo- and hyper-reflective streaks in dermis	R ² value	0.75
bright dots		p value	< 0.0001
Horizontal vessels	Branched vessels	Level of significance	0.05

BCC RCM-OCT features: Example 1

Nuclear palisading at the tumoral edge

Peritumoral rim, hypo and hyper reflective streaks in the dermis

BCC RCM-OCT features: Example 2

Ovoid structures in the dermis, hypo and hyper reflective streaks in the dermis Multiple tumor nests, dark peritumoral rims

Clinical Machines

Erbium-YAG laser (2940)

Varian GammaMed Ir-192 afterloading source and Varian BrachyVision™ planning software

Laser Ablation Clinical Study

Study Goals:

- 1. Test RCM/OCT capability to delineate tumor margins with high accuracy (micron scale)
- 2. Determine if improved cosmetic are obtained as compared to Mohs surgery, while and therapy results are the same (less than 5% recurrence)

BI Physical Sciences Inc. Ablation of BCC on the back

Post Ablation Results

Post-ablatior 11/18/2021

- 100 % of clinically diagnosed unequivocal BCCs were confirmed to be BCCs on RCM-OCT (n=53)
- 23 of 123 (18.7%) biopsy proven BCCs did not reveal any residual tumor on RCM-OCT and were spared any further intervention but continued RCM-OCT monitoring
- Tumors <500 microns treated with laser ablation had a recurrence rate of 3.5%
- Our study suggests RCM-OCT may potentially facilitate BCC triage for appropriate management at bedside, thus may also help streamline the management of BCC.

RT Clinical Study

Primary objective

 Determine histologic response rate of early-stage basal cell carcinoma to RCM/OCT-guided radiotherapy 6 weeks after completing treatment

Secondary objectives

- Adverse event frequency and severity
- Quality of life before and after radiotherapy
- Primary tumor recurrence rate 3 years after completing treatment

BCC on the nose: Pre-treatment Evaluation

Pretreatment

Red=Target using standard/clinical method Black=Target using RCM/OCT imaging

ARROW LEGEND: Green - Hair follicles; Orange- Tumor RED- BLOOD VESSEL

Post-treatment Evaluation

12 weeks post-treatment

RCM/OCT guided biopsy confirms no residual carcinoma Complete resolution of grade 2 radiation dermatitis at 12 weeks

Memorial Sloan Kettering Cancer Center

ARROW LEGEND:

RED- Large BLOOD VESSELS

- All patients enrolled underwent pretreatment post treatment imaging with RCM/OCT, radiotherapy
- All patients that underwent biopsy (n=7) had no evidence of residual carcinoma
- High grade adverse events infrequent
 - 1 grade 3 adverse event, radiation dermatitis
 - Other adverse events were grade 1-2
- Quality of life assessments improved compared to Mohs!
- Clinical target volume typically smaller using RCM/OCT definition
- No recurrence to date

ŧ

- Designed and built common optical path RCM/OCT instrument
- Demonstrated that RCM/OCT imaging capabilities complement each-other allowing for:
 - Imaging the epithelial layer at the sub-cellular scale and visualizing tissue morphology up to 1.5 mm in depth with micron scale
 - Assess cancer presence and spreading in depth and laterally
- Demonstrated the RCM/OCT may be a suitable tool for:
 - Reliably diagnosing skin lesions
 - ✓ Non-surgical therapy guidance

Physical Sciences Inc.

Team: Dr. N. Iftimia, PSI- Program PI Dr. C. Barker, Rad Oncologist, MSKCC - RT Clinical l ead Dr. Chih-Shan Jason Chen, Surgeon, MSKCC- Laser therapy Clinical Lead Drs. Larissa Pastore, M. Cordova and A. Sahu, **MSKCC** - Imaging specialists Mr. G. Maguluri, Dr. M. Mujat, PSI - Software Development Mr. J. Grimble, Ms. Aliana Caron, PSI- Mechanical design and Fabrication

Funding:

DoD: W81XWH-11-C-0486 NIH/NCI: R44 CA117218; R44CA240040

Questions?

- Nicusor Iftimia, PhD
- Physical Sciences Inc, Andover, MA 01810
- Email: iftimia@psicorp.com
- Phone: 978-689-0003