Compact, Automated Differential Absorption Lidar for Tropospheric Profiling of Water Vapor

D. Sonnenfroh, S. Coleman, R. Minelli, & R. Wainner
Physical Sciences Inc.
20 New England Business Center
Andover, MA 01810
sonnenfroh@psicorp.com

K. S. Repasky, Montana State University, Bozeman, MT
A.R. Nehrir, NASA Langley Research Center, Hampton, VA

Paper 3.1, Lidar Applications to Climate and Weather: Water Vapor Lidar
Seventh Symposium on Lidar Atmospheric Applications
American Meteorological Society
Phoenix, AZ
January 8, 2015
Mesoscale Meteorology

- Meteorological observations at the mesoscale (10s to 100s km) support many national needs:
 - Weather prediction
 - Climate monitoring
 - Air quality monitoring

- Increasing spatial and temporal resolution needed:
 - Improve precision of forecasting
 - Decrease losses from severe weather events
 - Improve climate forecasting

- No systematic national capability exists for these measurements, which are critical to the dynamical prediction of high impact weather and/or chemical weather.

- Observing Weather and Climate from the Ground Up, A Nationwide Network of Networks
 - Committee on Developing Mesoscale Meteorological Observational Capabilities to Meet Multiple National Needs
 - National Research Council
Met Balloons and Radiosondes
Successfully measuring H₂O profiles since the 1930s

- A radiosonde is a small, expendable instrument payload that is suspended 25 m below a weather balloon.
- Sensors measure pressure, temperature, and relative humidity.
- Wind speed and direction aloft are obtained by tracking position using GPS.
- Radio transmitter telemeters data to ground tracking station.
- Flight can last > 2 hours; radiosonde can ascend to > 35 km and drift > 300 km from launch point.

- Network has 100 sites, 2 launches/day, 73,000 launches/year
- Network costs $25-30M/year
- Radiosondes cost $8-10M/year, $160/unit
Vision for Water Vapor Profiling

- **NWS/NOAA vision**
 - An Integrated Upper Atmosphere Water Vapor Sensor, built around a DIAL, will supplement, then replace existing met balloons.
 - *Create compact, low cost, automated, eye safe, water vapor DIAL profiler for widespread deployment*
 - Precedent – small elastic backscatter lidars for cloud, aerosol, and wind profiling now commercially available, e.g. MPLnet.

- **PSI/MSU**
 - MSU has developed 3 generations of WV DIAL
 - MSU & PSI have teamed to create a commercial product.
 - Develop a design to enable 24/7 unattended operation in controlled environment.
 - Improved measurement performance.
 - Improve daytime performance
 - Decrease range to full overlap
 - Improved operational performance
 - Improve long term stability.
 - *Use mature & highly reliable components*
Operating Wavelength
Water Absorption vs Laser Operating Windows

- Plot of water vapor absorption from HITRAN 2012 database vs. wavelength in the near-IR.
- US Standard Atmosphere, 296 K, 1 atm, 10 m horizontal, 30% RH
- **Design Trades**: Laser availability, detector availability, eye safety
• HITRAN model of operational line showing On Line, Side Line Range, and Off Line wavelengths (296 K, 100 m horizontal at 0 AGL, 1 atm pressure, US Standard Atm.)

• Another Side Line wavelength is shown for modeling purposes.
Transmitter Schematic & Characteristics

- Separate DBR lasers for On and Off
 - ~ 10 mW
- Operating wavelength selected using 2x1 MEMs switch
 - Switch λ's every 6 sec
- TSOA amplifier
 - Operated in saturated mode
 - Pulsed using pulsed current supply
 - 5 μJ pulse energy
 - 1 μs pulsewidth
 - 10 kHz rep rate
 - 5 W/50 mW peak/average power
- Beam expander provides Class I (eye-safe) beam profile wrt aircraft
- Frequency lock via wavemeter
Transmitter – DBR & Wavelength Locking

- **Current Tuning vs. Temp**
 - Mode hops of 22 GHz
 - “On” wavelength – green dashed line
 - “Off” wavelength – red dashed line
 - Choose conditions so operating wavelength is in center of mode range

- **Wavelength Locking**
 - Done with Bristol wavemeter
 - Locks to within wavemeter precision
 - $\Delta \nu_{\text{off}} = \pm 17$ MHz
 - $\Delta \nu_{\text{on}} = \pm 24$ MHz
Transmitter – TSOA Performance

- **Pulsing**
 - TSOA pulsed via current pulser

- **Switching**
 - Switching time ~ 400 μs

- **Amplifier Saturation**
 - TSOA saturated for seed power $>~$2-3 mW
 - Operation in saturated mode maximizes stability
- DBR lasers originally in commercial mount and interfaced to system through “cage mount” optics
- Source of some mechanical instability
- New laser mounting:
 - Vendor-supplied fiber pigtailed butterfly package
 - Highly robust custom mount
14 inch diameter telescope
- Uniaxial configuration
- Pulse energy normalization
- Narrow FOV channel
 - Narrow BPF
 - Etalon, stabilized
- Wide FOV channel
- Si APD SPCM x 2
- Multichannel scalar
- Spatial binning to 150 m
- Temporal averaging to 10-15 minutes
Diffuse Solar Background & Clouds

- **Observed Background**
- **Detector saturation**
- **Cloud Background**
- **Average Background**

Detector Background Counts

![Detector Background Counts](image)

Observed Background

- Background counts from diffuse solar too high (2xNBF fwhm = 160 pm)
- Add etalon
- FSR 1.3 cm⁻¹, 99 pm
- Finesse 13
- Spectral width 7 pm

Diffuse Solar Radiance Model

\[P_{bg} = L_{bg} \times A_r \times \Omega \times \Delta \lambda \]

- Background counts from diffuse solar too high (2xNBF fwhm = 160 pm)
Spectral Filtering

- Narrow Bandpass Filter
- Measured Etalon Transmission
- Etalon
 - FSR 100 pm
 - Spectral width 2 pm
 - Finesse 53
- Lock etalon temperature to λ_{on}
- Lock λ_{off} to etalon fringe

Data
Lorentzian fit to data
Bandwidth (FWHM) = 0.0019 nm
FSR = 0.1 nm
Finesse = 53
Error Propagation

- The fundamental LIDAR equation is:
 \[
 P_{\text{trans}} F(r) A K \beta(\lambda, r) \Delta r \exp\left(-2 \int_0^r \alpha(r') \, dr'\right)
 \]
 \[
P_{\text{ret}}(r) = \frac{P_{\text{trans}} F(r) A K \beta(\lambda, r) \Delta r \exp\left(-2 \int_0^r \alpha(r') \, dr'\right)}{r^2}
 \]

- In DIAL, for 2 closely spaced wavelengths, the water vapor mixing ratio is written as:
 \[
n_C(r) = \frac{1}{2 \Delta \sigma_C(r) \Delta r} \ln \frac{P_{\text{on}}(r) P_{\text{off}}(r + \Delta r)}{P_{\text{on}}(r + \Delta r) P_{\text{off}}(r)}
 \]

- Standard error propagation techniques yield:
 \[
 \delta(n_C) = \frac{1}{\sqrt{2 \Delta \sigma_C \Delta r}} \left\{ \left[\frac{\delta N_{\text{on}}(r)}{N_{\text{on}}(r)} \right]^2 + \left[\frac{\delta N_{\text{off}}(r)}{N_{\text{off}}(r)} \right]^2 \right\}^{1/2}
 \approx \frac{1}{\Delta \sigma_C \Delta r} \frac{\delta N(r)}{N(r)} = \frac{1}{\Delta \sigma_C \Delta r} \frac{1}{\text{SNR}}
 \]
Error Analysis

- **(top) Simple error analysis**
 - Transmit power 5 μJ
 - Effect of various background levels

- **Good agreement with experimental observations (MSU)**

- **Predicted precision for system**
 - ~5% for altitudes ≤ 3 km, 85% of total column.
 - ~10% for altitudes ≤ 3.3 km, 89% of total column.
 - ~20% for altitudes ≤ 3.8 km, ~90% of total column.

- **System enables 5% retrievals throughout boundary layer**

- **(bottom) Fraction of total water column vs. altitude (U.S. Standard Atmosphere).**
System Tx/Rx Breadboard

Transmitter Module

Receiver Module
A cabinet level transient thermal analysis of the lidar was performed

Assumptions
- Solar flux based on 40°N on July 1
- Ambient temperature profile from Washington National Airport, mid-July hot conditions, still air
- AC 12 kBTU/hr
- R3 insulation in the cabinet
- White painted exterior (α=.25)
ThermoElastic Modeling - Results

- Internal temperature excursion predicted to be < 1C
- *No hotspots identified*
ThermoElastic Modeling - Results

- Rx axis moves ~2 μRad on startup; ~1 μRad for normal operation
- Tx axis moves ~30 μRad on startup; ~1 μRad for normal operation
- Responsible component(s) identified and reworked.
Cabinet Mounted System

- NEMA4 all-weather telecom cabinet
- Sliding optics rack
- Electronics bay underneath
- Window in roof
- Integral power center
- Integral a/c & heater
- Retractable wheels
- Leveling mounts
System Photographs

- Lidar in Cabinet
 - Receiver Side
- Lidar in Cabinet
 - Transmitter Side
- Lidar extended from Cabinet
Program Status

● **Status**
 – Local testing at PSI: January - February 2015
 – Howard University (Raman lidar): March 2015

● **Acknowledgements**
 – Kristin Galbally-Kinney and Jan Polex, PSI
 – Rickey Petty, Program Monitor, Contract DoE DE-SC0007539
 – Mr. Joseph Facundo (NWS - retired)
 • Mr. Facundo advanced the concept for an Integrated Upper Atmosphere Water Vapor Sensor
 – Prof. Belay Demoz, Howard University