Low-cost Lightweight Airborne Laser-based Sensors for Pipeline Leak Detection and Reporting

M.B. Frish, R.T. Wainner, M.C. Laderer, and M.G. Allen
Physical Sciences Inc., 20 New England Business Center, Andover, MA 01810

J. Rutherford and P. Wehnert
Heath Consultants Inc., 9030 Monroe Rd., Houston, TX 77061

S. Dey, J. Gilchrist, and R. Corbi
New Era Technology, Inc., 755 Boardman-Canfield Road, Boardman, OH 44512

D. Picciaia
TEA-Sistemi S.p.A., Piazza G. Mazzini 1, 56127, Pisa, Italy

P. Andreussi
University of Pisa, Via Diotisalvi 2, 56126, Pisa, Italy

D. Furry
Leak Surveys Inc., PO Box 3066, Early, TX 76803

SPIE Paper No.: 8726-12

Presented at:
Next-Generation Spectroscopic Technologies VI
SPIE Defense, Security and Sensing, Baltimore, MD
29 April 2013
Tunable Diode Laser Absorption Spectroscopy (TDLAS)

TDLAS is an active optical method for detecting and quantifying one or more analyte gases mixed with other gases.

Competitive Features
- Selective; generally insensitive to cross-species interference
- Sensitive; sub-ppm detection of many gas species
- Fast; sub-second response time
- Configurable; point, open-path, or standoff sensor
- Non-contact; only the probe beam need interact with the analyte

Accepted as rugged, reliable, accurate commercial industrial sensors and analyzers
- *Thousands currently in use*
Like a flashlight, laser beam illuminates a surface

- Senses analyte gas between transceiver and illuminated surface
 - Standoff range ~100 ft with handheld transceiver

> 2000 RMLD™ units in use for natural gas leak surveying
Physical Sciences Inc.

Gas Pipeline Leak Surveying

- The US natural gas transmission and distribution comprises
 - Transmission: 250,000 miles of pipeline, 1,700 transmission stations, 17,000 compressors
 - Local Distribution: 500 to 1,000 gate stations, 132,000 surface metering and pressure regulation sites, 1,000,000 miles of distribution pipeline, 61,000,000 end-user customer meters
- The pipeline system continues to develop around fracking gathering fields and biogas-producing landfills
- Minimizing leaks and ruptures is essential for limiting emissions of greenhouse gases, reducing loss of valuable gas product, and preventing explosions
- Maintaining the system’s security and integrity is a continual process of identifying, locating, and repairing leaks by:
 - Monitoring pipeline flow conditions to flag abnormal conditions
 - Scheduled periodic walking, driving, or aerial surveys
- The San Bruno explosion has increased national emphasis on improving leak and rupture detection
 - *Highlights needs for cost-effective widely-deployed real-time leak sensors and surveying systems*
Aerial Mapping of Landfill Emissions

- **Landfills produce about 22 % of all methane emissions** (U.S. EPA, 2010)
 - Locating and quantifying methane sources is needed to improve gas collection systems
 - Currently deployed technologies, e.g. flux chamber, are time consuming, require data collected in a grid of sampling points, and may underestimate flux from hot spots

- **Optical remote sensing technologies estimate the total emission from soil by concentration measurements in the downwind plume**
 - EPA Method OTM-10 uses a ground-based laser and a set of retroreflectors positioned on a line downwind of the emitting area

- **Backscatter TDLAS deployed on a small unmanned quadrotor aerial vehicle, described here, scans the emitting surface and downwind plume from above**
 - Enables computing crosswind concentration, emitted flux, and concentration contour mapping
Technology Features

- **Based Near-IR Tunable Diode Laser Absorption Spectroscopy (TDLAS)**
 - Established non-contact trace gas sensing technique used for industrial safety and process control
 - Utilize telecommunications-style room temperature diode lasers
 - Yields the path-integrated concentration (ppm-m)

- **Molecules of the target gas in the laser light path absorb specific wavelengths (colors) of infrared light**
 - A wavelength is chosen where methane is the only absorbing gas – other gases in the air are invisible
 - Insensitive to cross-species interference

- **Wavelength Modulation Spectroscopy (WMS) signal processing measures the methane absorption**
 - Highly-sensitive; sub-ppm detection of many gas species
 - Fast; offering sub-second response time
Wavelength Modulation Spectroscopy

- A frequency agile (i.e., tunable) laser beam transits a gas sample
- The laser frequency (inverse of wavelength) scans repeatedly across an absorption line that uniquely identifies the target gas
- Absorption of the laser beam by the target gas creates an amplitude modulated signal at the detector
- Phase sensitive demodulation (i.e., lock-in amplification) provides target gas concentration output
 - Senses absorbances \(\sim 10^{-5} \); \(\sim 1 \) ppm-m \(\text{CH}_4 \)
Sensor Features

- Weight <9 lbs (Controller: 6 lbs and Transceiver: 3 lbs)
- Rugged, splash-proof and weather resistant
- Detection range: 2 feet to 100 feet
- Sensitive to <5 ppm-m
- Built in self test and calibration
- IR laser: Eye-safe (EN 60825-1), always on
- Spotter laser: Class IIIa; operator controlled
- Rechargeable battery lasting over 8 hours
- User friendly interface with audible tones
- Operating temperature from 0°F to 120°F
- Ergonomic design with shoulder harness
Sensor Internals

- **Single-Board Control Platform**
 - Complete WMS system
 - 10 kHz modulation
 - Incorporates laser control and data processing on battery-operated board
 - Digital signal processor for high-speed data acquisition and processing
 - Embedded microcontroller for laser operation, data reduction, communication
 - Serial (RS-232) data output stream and setup interface
 - SPI communication available for interface with other microcontrollers

- **Transceiver**
 - Lightweight, compact, rugged handheld unit
 - Co-linear laser transmitter and receiver
 - Rejects sunlight
 - Integrated visible pointing laser

- **User Interface**
 - Visual:
 - LCD display in controller unit
 - Audio
 - Variable tone: frequency = 10 x methane concentration
 - Fluctuation algorithm: leaks indicated by rapid concentration changes
Measured Range Limits

<table>
<thead>
<tr>
<th>Surface</th>
<th>Range (m)</th>
<th>Surface</th>
<th>Range (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Woodshed</td>
<td>41</td>
<td>Painted Metal Door</td>
<td>14</td>
</tr>
<tr>
<td>Old White Paint</td>
<td>35</td>
<td>Dirty Snow Bank</td>
<td>23</td>
</tr>
<tr>
<td>Brick</td>
<td>50+</td>
<td>Clean(er) Snow Bank</td>
<td>19</td>
</tr>
<tr>
<td>Concrete</td>
<td>43</td>
<td>Clean Asphalt</td>
<td>25</td>
</tr>
<tr>
<td>Stucco</td>
<td>46</td>
<td>Sand</td>
<td>33</td>
</tr>
<tr>
<td>Boulders</td>
<td>43</td>
<td>Sand on Asphalt</td>
<td>34</td>
</tr>
<tr>
<td>Tree</td>
<td>46</td>
<td>Wet Sand</td>
<td>14</td>
</tr>
<tr>
<td>Shrub</td>
<td>43</td>
<td>Clean Standing Water</td>
<td><1</td>
</tr>
<tr>
<td>Grass (on hill)</td>
<td>40</td>
<td>Dirty Water</td>
<td>3</td>
</tr>
<tr>
<td>Metal Post</td>
<td>>39</td>
<td>Bag w/CH$_4$ on Snow*</td>
<td>50</td>
</tr>
<tr>
<td>Wooden Stockade</td>
<td>55</td>
<td>Oblique Bag w/CH$_4$ on Ground</td>
<td>50</td>
</tr>
</tbody>
</table>
Quadrotor sUAV Platform

- Total weight 4.6 kg
 - TDLAS 1.4 kg, < 1.5 W
- Zigbee 2.4 GHz digital radio system provides remote-control and real-time data download
- The On-Board Control Unit manages the TDLAS sensor, stores raw data, and transmits to the control station
 - All samples are geo-referenced, marked with GPS position and barometric altitude
- Operator may pre-program a survey route as a set of latitude, longitude, altitude waypoints
Sensor evaluated in laboratory using optical cell filled with CH₄ / N₂ mixtures of 5-1000 ppm-m

Validated in open field by simulating diffuse methane emission from soil

Rubber pipelines distribute methane over a 20m x 20m area at 43 g/s = 93 g/m² - day
- High range of methane landfill emissions
- Low range of methane concentration due to the small emitting area
Aerial Pipeline Leak Surveillance

- Aerial natural gas pipeline leak surveillance, from fixed or rotary winged aircraft or helicopters, has been routine for many years.
- In-situ methane sensors, requiring the aircraft to fly through a leak plume to detect it, are often utilized
 - Speeds ~ 150 mph, altitudes ~ 750 feet
- Backscatter laser sensor systems are gaining acceptance
 - Capital costs, maintenance, and weight have limited deployment to a small number of operators

<table>
<thead>
<tr>
<th>Platform</th>
<th>Technology Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed Wing</td>
<td>RMLD</td>
</tr>
<tr>
<td>Fixed Wing</td>
<td>CRDS</td>
</tr>
<tr>
<td>Helicopter</td>
<td>Gas-Filter Correlation Radiometry</td>
</tr>
<tr>
<td>Helicopter</td>
<td>Reference Channel Laser</td>
</tr>
<tr>
<td>Helicopter</td>
<td>DIAL</td>
</tr>
<tr>
<td>4X4 Vehicle</td>
<td>CRDS</td>
</tr>
</tbody>
</table>
High Altitude Aerial Backscatter TDLAS

Combining EDFA and WMS provides long-range (6000 ft), robust and modest cost standoff sensor

Remove EDFA for low-altitude (<1200 ft) survey
Aerial RMLD™ Implementation

- Backscatter TDLAS is combined with automated data reduction, alerting, GPS, and video imagery, integrated into a single-engine single-pilot light aircraft platform.
- Detects plumes from natural gas leaks smaller than 10 SCFM
 - Corresponds to the flow through a sub-millimeter (<0.04 inch) hole in a 800 PSIA transmission pipeline.
- Advantages: Cost, Simplicity, Size, Weight, Power, Manufacturability, Data and Graphic User Interfaces
 - Real-time notification of leak coordinates
 - Cockpit alert enables maneuvering for verification and examination.
aRMLD™ Example Data

~1000 scfh leak rate

17:14:50
Heading South
~ 800 ft AGL

~ 17:17:11
Heading North
~ 1000 ft AGL
~ 100 ft east of leak
Maneuvering
No Joy

17:20:22
Heading South
~ 600 ft AGL
~ 400 ft NE of leak

17:22:47
Landfill
~ 3000 ft ESE of rwy 10
~600 ft AGL
Turning base-to-final
Conclusion

- Backscatter TDLAS is a cost-effective method for aerial detection and mapping of methane emitted by pipelines and landfills

- Demonstrated on small unmanned quadrotor, single engine-fixed wing, and lightweight helicopter

- Commercial package for pipeline leak surveying in use for several years
Acknowledgments

- This work has been supported by:
 - Physical Sciences Inc.
 - Heath Consultants Inc.
 - New Era Technology Inc.
 - TEA-Sistemi S.p.A
 - US Department of Energy/National Energy Technology Laboratory
 - Leak Surveys Inc.
 - Pipeline Research Council International (PRCI)
 - Regione Toscana
 - Northeast Gas Association
 - US Environmental Protection Agency