Characterization of Mid-Infrared Interband Cascade Laser Coupling to a GeSbS Chalcogenide Glass Waveguide

David R. Scherer¹, Joel M. Hensley¹, Krishnan R. Parameswaran¹, B. Didier F. Casse¹, Vivek Singh², Pao T. Lin², Anu Agarwal², Lionel C. Kimerling², James. Giammarco³, Jacklyn Wilkinson³, Igor Luzinov³, J. David Musgraves³, Kathleen Richardson³, Juejun Hu⁴, Chul Soo Kim⁵, William W. Bewley⁵, Chadwick L. Canedy⁵, Igor Vurgaftman⁵, Joshua Abell⁵, Jerry R. Meyer⁵, Mijin Kim⁶

¹Physical Sciences Inc., 20 New England Business Center, Andover, MA, 01810
²Microphotonics Center, Massachusetts Institute of Technology, Cambridge, MA, 02139
³School of Materials Science and Engineering, COMSET, Clemson University, Clemson, SC, 29634
⁴Department of Materials Science and Engineering, University of Delaware, DE, 19716
⁵Code 5613, Naval Research Laboratory, Washington DC, 20375
⁶Sotera Defense Solutions, 2200 Defense Highway, Crofton, MD, 21114

CLEO
2012-05-07
MIR Integrated Photonic Sensor on a Chip

- Hybrid integration of interband cascade laser (ICL), chalcogenide glass waveguide micro-resonator and polycrystalline PbTe detectors on a Si substrate
- Polymer coating for enhancing analyte concentration
- Target ppb-level sensitivity
Room Temperature
Interband Cascade Laser Operation

- **Laser Requirements**
 - Room-Temperature CW operation, Power \(\sim 10 \text{ mW} \)
 - Single-frequency emission with center wavelength \(\lambda = 3.4 \mu m \)
 - Single-spatial mode output beam, TE output polarization

- **ICLs fabricated by NRL**
 - GaSb-based device with ridge width = 7 \(\mu m \), HR/uncoated facets
 - DFB devices with corrugated sidewalls forming 4\(^{th}\) order grating
 - Beam divergence: \(\theta_{1/2} \) for fast (slow) axis = 40\(^\circ\) (30\(^\circ\))

Vurgaftman et al., IEEE JSTQE 2011
Fabrication of ChG Waveguide Structures

- Fabrication of ChG ($\text{Ge}_{23}\text{Sb}_7\text{S}_{70}$ or As_2Se_3) waveguide structures
 - Bulk multi-component chalcogenide glass (Clemson).
 - Waveguides were fabricated on a silicon substrate via UV contact lithography, GeSbS thermal deposition, and lift-off (MIT).

- Device structure
 - ChG waveguide (1.3 μm or 3.7 μm thick) structures
 - SiO$_2$ undercladding (3 μm thick)
 - Si substrate

Hu et al., Optics Letters 2008
Chalcogenide Glass (ChG) Waveguide Chips

Mask

Input

Output

Paper-clip

Micro-disk

Chip

100 μm radius micro-disk
NIR Characterization of Micro-Disk Resonators

- Microdisk resonators: Q and loss measurement in the NIR (λ=1550 nm)
- Based on fiber-coupling a telecom laser to the ChG waveguide
- Different radii microdisk resonators used to separate loss contributions in Ge$_{23}$Sb$_7$S$_{70}$ at 1550 nm
 - Observed high Q of up to 6×10^5 and low loss of 0.6 dB/cm in 100 µm radius resonators
 - Scattering loss due to sidewall roughness dominates
 - Found material loss in glass to be ~0.15 dB/cm

- Demonstrates low loss, high Q resonators in the NIR
MIR Waveguide Coupling – Experimental Apparatus

- **Butt-coupling**
 - Based on micro-positioning of ChG input facet next to ICL output facet
 - Ideal for compact integration but risks device damage

- **End-fire coupling**
 - Based on high-NA collection of ICL output and re-focusing on ChG input facet
 - Used for device testing
• **Butt-coupling**
 - Coupling into waveguides as small as 4.8 µm x 1.3 µm

 Estimate for number of TE modes supported in waveguide

 \[N = \frac{\pi}{4} \left(\frac{2d}{\lambda} \right)^2 \left(n_{chG}^2 - n_{cladding}^2 \right) \]

 \(N \sim 4 \) TE Modes

• **End-fire coupling**
 - Coupling into 5.0 µm x 1.3 µm waveguide
 - Gaussian fit
 • \(\sigma_x = 2.8 \) µm, \(\sigma_y = 3.2 \) µm
Comparable coupling achieved for Butt-coupling and End-fire coupling

- **Butt-coupling**
 - Insertion loss vs. ICL – ChG separation
 - Insertion loss for 7 μm wide x 3.7 μm thick straight waveguide = -29 dB

- **End-fire coupling**
 - Insertion loss for 7 μm wide x 1.3 μm thick straight waveguide = -31 dB
 - Insertion loss for 7 μm to 2 μm tapered waveguide = -38 dB
Total Insertion Loss Contributions (End-fire case)

1. **Modal mismatch between the ICL beam and ChG waveguide**
 - ICL beam ~ 9.6 μm x 7.1 μm (field)
 - Modal overlap ~ −13 dB

2. **Fresnel reflection from the waveguide facets** (~14 dB)

3. **Waveguide propagation loss**
 - Straight vs. paperclip waveguides (5 μm wide x 1.3 μm thick devices)

<table>
<thead>
<tr>
<th>Straight waveguide</th>
<th>Insertion Loss = -35.0 dB ± 2.2 dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>length = 1.2 cm</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Paperclip waveguide</th>
<th>Insertion Loss = -38.7 dB ± 2.3 dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>length = 2.2 cm</td>
<td></td>
</tr>
</tbody>
</table>

Assuming no loss due to bends

Propagation Loss ~ -3.7 dB/cm ± 2.6 dB/cm

Measurement limited by waveguide-to-waveguide variation
Summary

Results so far:

- Room temperature ICL operation (NRL)
- Fabrication of planar waveguide structures of chalcogenide glass (MIT / Clemson)
- Characterization of ICL coupling into a chalcogenide glass waveguide (PSI)

Next Steps:

- Characterize Q of micro-disk resonators in the MIR
 \[Q_i = \frac{2\pi n_g}{\alpha \lambda} \]
- Demonstrate gas sensing of analyte using micro-resonator

Long-term goal:

- Integrate ICL + resonator sensing element + detector onto a chip for ultrasensitive chemical vapor detection
Acknowledgment: Funding for this work has been provided in part, by the US Department of Energy [Contract # DE-NA000421], NNSA/DNN R&D. This paper has been prepared as an account of work partially supported by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.