Hyperspectral Infrared Imaging of HF (v,J) Chemiluminescence and Gain in Chemically Reacting Flowfields

W.T. Rawlins, D.B. Oakes, and S.J. Davis
Physical Sciences Inc.

36th AIAA Plasmadynamics and Lasers Conference
Toronto, Ontario, Canada
June 2005
Hyperspectral Imaging for HF Lasers

- HF lasers use exoergic reaction: \(F + H_2 \rightarrow H + HF(v,J) \)

- Spectral images diagnose system performance
 - flow field mixing
 - inversion density (gain) mapping
 - beam diagnostics: spatial and spectral
Adaptive Infrared Imaging Spectroradiometer (AIRIS)

- **Tunable (low order) etalon operated with wide spectral range**
 - high spectral resolution, angular acceptance, and optical throughput
 - digital capacitance micrometry to control etalon spacing (wavelength) and alignment (resolution)

- **Interface to variety of IR focal plane array detectors**

- **View scene at series of individual wavelengths**
 - tune etalon to molecular features
 - sequential sampling to build hyperspectral data cube
AIRIS: Low-Order Fabry-Perot Interferometer/Imager

- At mirror spacings ~ \(\lambda \), central spot fills detector array
- Use broad-band filter to isolate free spectral range
- High angular acceptance, large aperture (36 mm)
Optical Configuration of HF AIRIS Instrument

- Spectral range = 2.6 to 3.1 \(\mu m \)
- Spectral resolution = 0.008 \(\mu m \), 8th order
- Spectral scan rate = 30 wavelengths/s
- Spatial resolution = 0.9 mm
- Magnification = 1:20 at 36 inches
- Focal plane array = 320 x 256 pixels, 30 \(\mu m \) pitch
- Object plane = 19.2 cm x 15.4 cm
- NESR = \(10^{-5} \) W/cm\(^2\) sr \(\mu m \)
Free Spectral Range and Spectral Resolution
Spectral Responsivity of HF AIRIS

Responsivity, Counts/(W/cm²-sr-µm)

Wavelength, µm

Room Air
FILTER 1
FILTER 2

Transmission of Room Air, 1 m

H-1456 color

Responsivity, Counts/(W/cm²-sr-µm)

Wavelength, µm
F-Atom Source:
Microwave Driven Jet (MIDJet)*

- Produces a high velocity jet of neutral gas
 - diverse source of atomic species (F, H, N, O, ...)

- No electrodes or confining dielectric vessel
 - high power (1 to 30 kW)
 - no consumable parts: low maintenance
 - “contamination-free” output
 - reactive as well as non-reactive gases
 - no diluent gas required

- Technology being developed for several applications
 - semiconductor processing
 - halogen source for high power chemical lasers
 - waste stream remediation

*U.S. Patents: 5,793,013 and 5,973,289
MIDJet F + H₂ Reactor

- 2.6 kW, 2.6 Torr
- Water-cooled H₂ injector

- FOV: 14.7 cm x 19.6 cm
- Images are corrected for background radiation
- Blackbody calibration of spectral response

HF P₂(5) Emission, 2.795 µm

- **SF₆**
- **MIDJet**
- **H₂/He**
- **Chamber**
- **Vacuum**

Controller and PC
Subsonic HF(v,J) FTIR Spectra at Two Reaction Distances

$F + H_2 \rightarrow HF(v,J) + H$

- Spectrum at 1 cm shows primarily $v' = 2,3$
- Spectrum at 9 cm shows deactivation into $v = 1$
Montage of $HF(v,J)$ Emission Images

$F + H_2 \rightarrow HF(v,J) + H$
Strategy for Population Inversion and Small-Signal Gain

- Analyze cascade pairs, i.e., $P_v(J) - P_{v-1}(J + 1)$
- $N_u = I_u/A_{ul}$
- $SSG \propto \left(N_{v,J} - \frac{g_{v,J}}{g_{v-1,J+1}} N_{v-1,J+1} \right) A_{ul}$

Example: (2,4) and (1,5) levels

$SSG \propto \left(N_{2,4} - \frac{9}{11} N_{1,5} \right) A_{2,4 \rightarrow 1,5}$
AIRIS Image of Small-Signal Gain: $P_2(5-7)$ Transitions

- Units are SSG in cm$^{-1}$
- Positive SSG observed for $P_2(4-6)$
Small Signal Gain in Subsonic Reactor: HF Fundamental Band FTIR Spectra, $v' = 2$

- Estimated gains for $v = 2 \rightarrow v = 0$ are 0.01 to 0.02 %/cm for $J' = 1$ to 5
MIDJet Supersonic Flow Reactor

- To 5 kW Magnetron
- Wave Guide
- MIDJet™
- Mixing Nozzle
- Out of Plane Optical Port
- 3" OD Flow Tube
- 2" Dia Optical Ports
- Pressure Control Valve
- Flow Transition Section
- Gate Valve
- To Roots Pump
- 8" Dia 4-way Cross
- Optical Port
Supersonic HF Flame at 8 Torr

2.650 μm

2.730 μm (P₂ (3))

2.750 μm (P₂ (4))

Relative Intensity vs. Pixel Number
AIRIS Spectra of Supersonic HF Flame

0.01 μm Interval

0.002 μm Interval

P2 (7 - 10): FTIR spectra ⇒ SSG ~ 1 %/cm
Summary

- **High-sensitivity hyperspectral IR imager**
 - 2.6 to 3.1 μm at 0.008 μm spectral resolution
 - field of regard 19.2 cm x 15.4 cm at 0.09 cm spatial resolution

- **Spectral images of F + H₂ mixing in subsonic and supersonic flowfields**

- **2-D mapping of small-signal gain**
 - results are consistent with conventional FTIR measurements

- **Spectral imaging method is a tool for:**
 - evaluation of reagent mixing schemes and reactor function
 - diagnosis of HF laser output spectral and spatial content
 - application at other HEL wavelengths
Acknowledgements

- Work supported by Air Force Research Laboratory, Directed Energy Directorate, Kirtland AFB, NM
- Dr. Gerald Manke II for helpful discussions